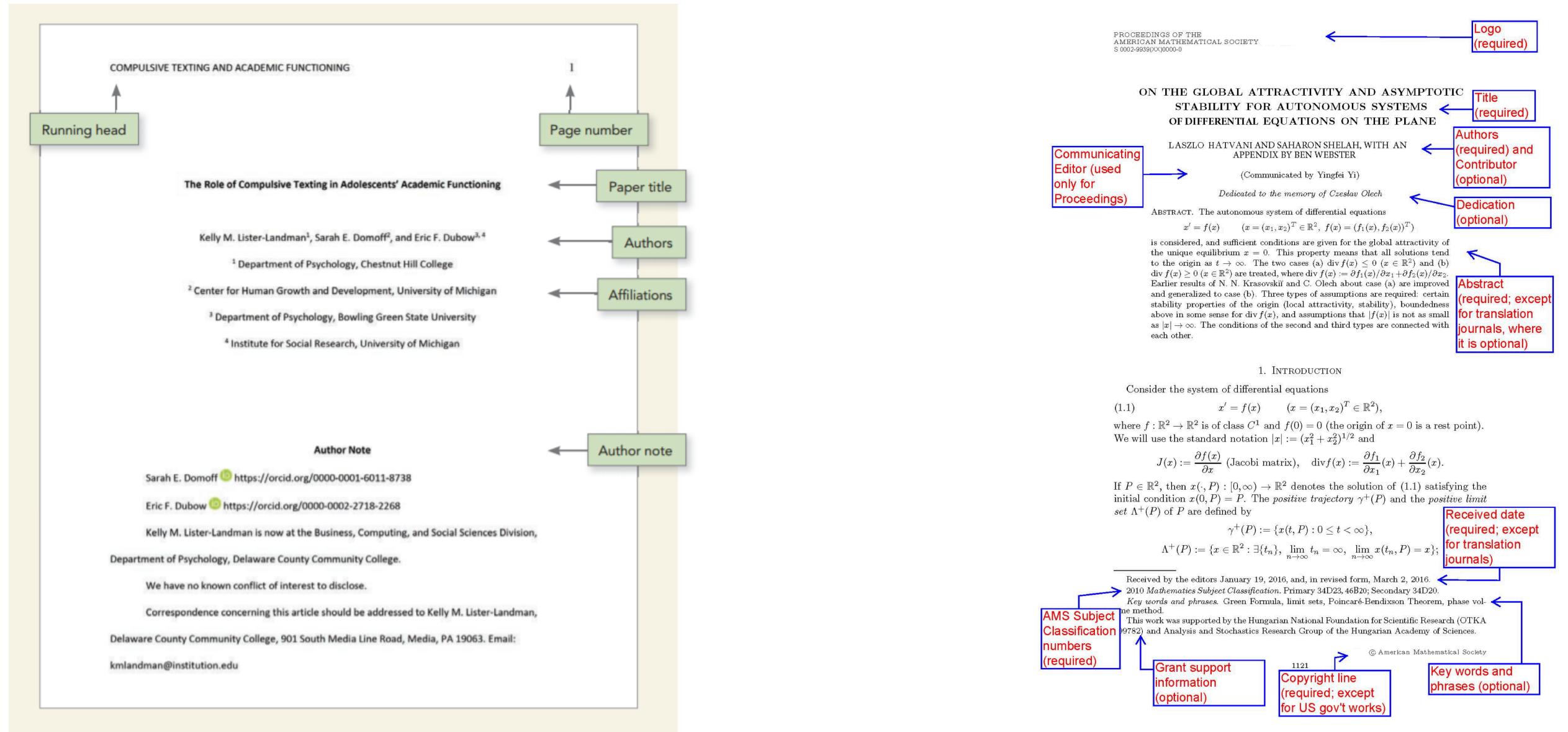


Human-Computer Interaction

# Reporting & Writing HCI Papers

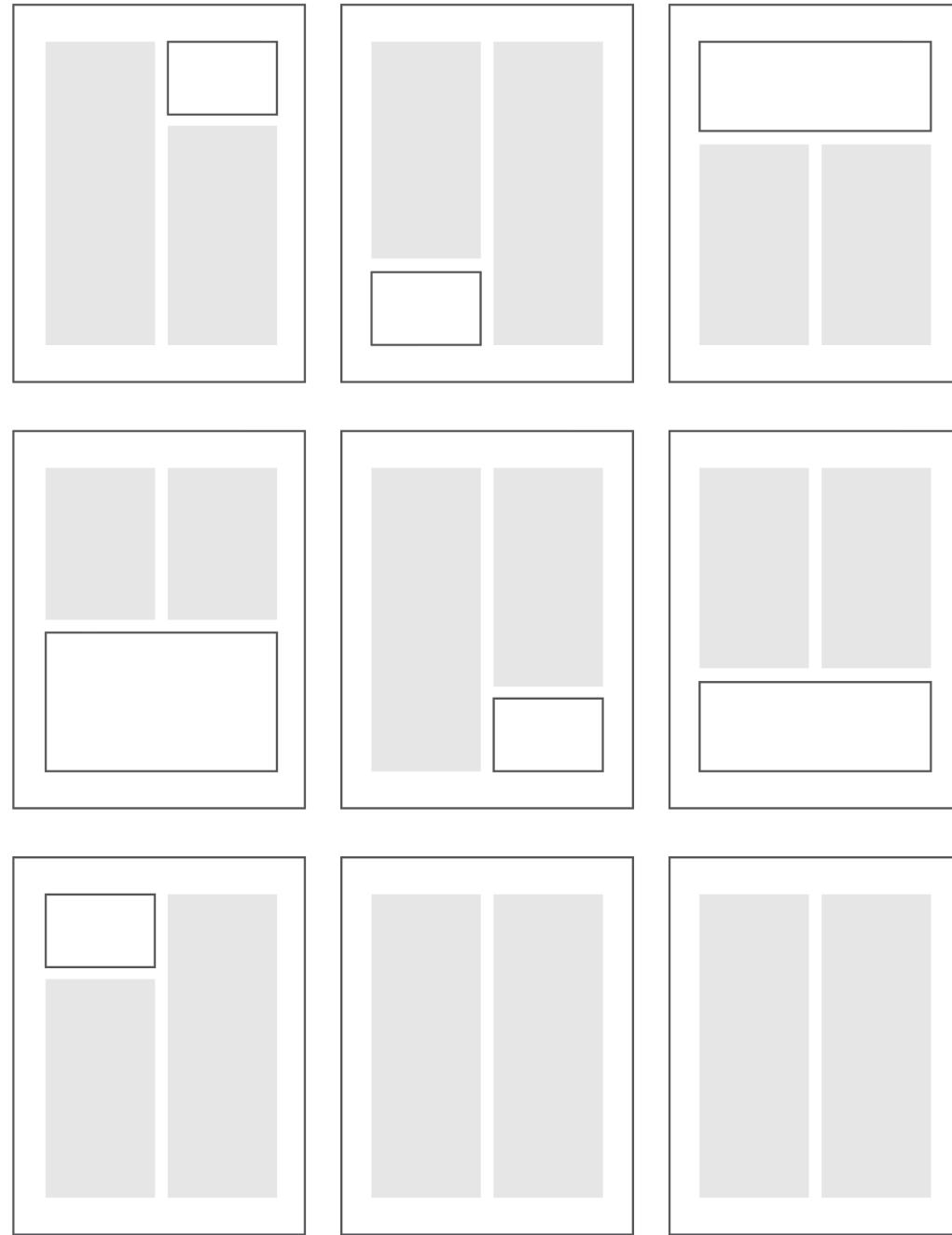
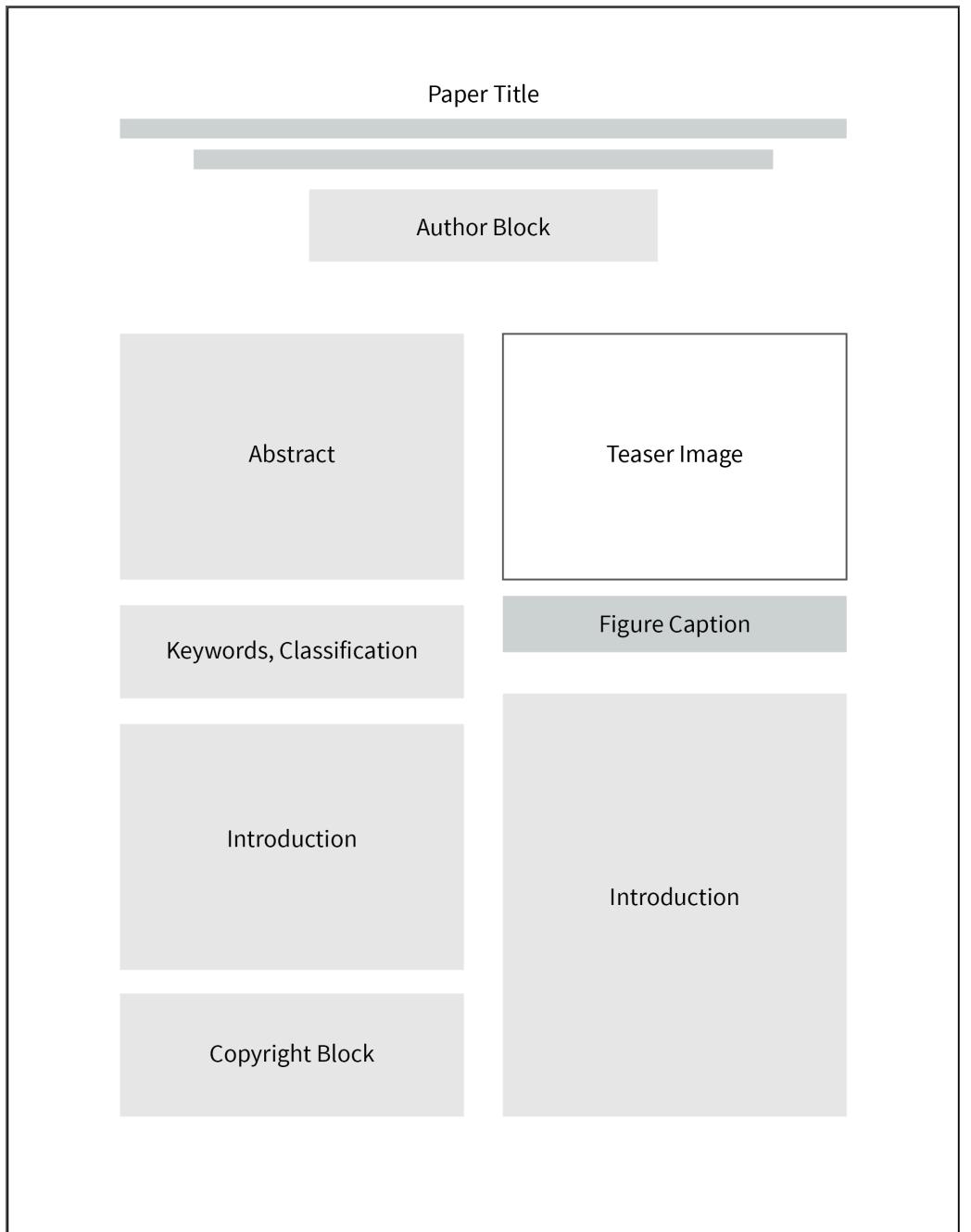
Professor Bilge Mutlu

# Today's Agenda


- » Overview: *Reporting Statistics, Writing*
- » General Q&A

## *What are reporting norms in HCI research?*

Because HCI is an interdisciplinary field, the reporting norms are adopted from different fields.



| Aspect                          | Norm                                               |
|---------------------------------|----------------------------------------------------|
| Paper structure                 | APA (loosely)                                      |
| Results of statistical analyses | APA (strictly)                                     |
| Tables, figures                 | APA (very loosely)                                 |
| Citations                       | Depends on the publisher (ACM, IEEE, etc.)         |
| Formulas                        | AMS (loosely)                                      |
| Style                           | APA (loosely), generally high standards in writing |

# APA Publication Manual: Print, Web; AMS Style Guide: Web<sup>1</sup>



<sup>1</sup>Sources: [Left](#), [Right](#)

# What does an HCI paper look like?



## *How is an HCI paper structured?*

HCI papers commonly follow the structure below:

- » Abstract
- » Introduction
- » Related Work/Background
- » *Hypotheses (quant. empirical)*
- » *System/Design (design-based)*
- » Method
- » Results
- » Discussion
- » Conclusion
- » Acknowledgements
- » References
- » Appendices

## *What is an abstract?*<sup>2</sup>

The abstract provides a brief but comprehensive summary of the contents of the paper. It gives readers an overview of the paper and helps them decide whether to read the full text. Usually 150 words max.

The abstract usually includes (1-2 sentences each):

- » Summary of literature review
- » Problem investigated/RQs
- » Hypotheses
- » Methods used
- » Study results
- » Implications

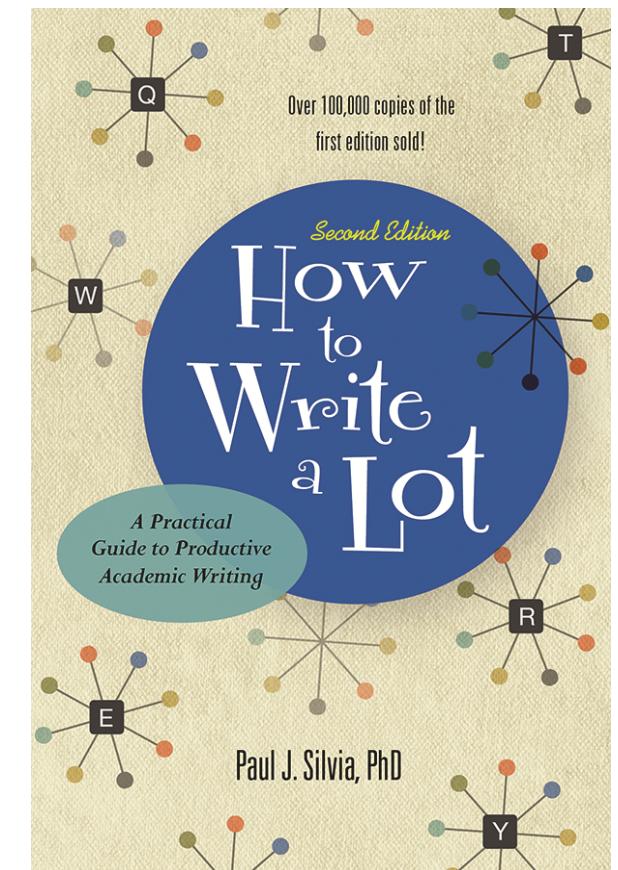
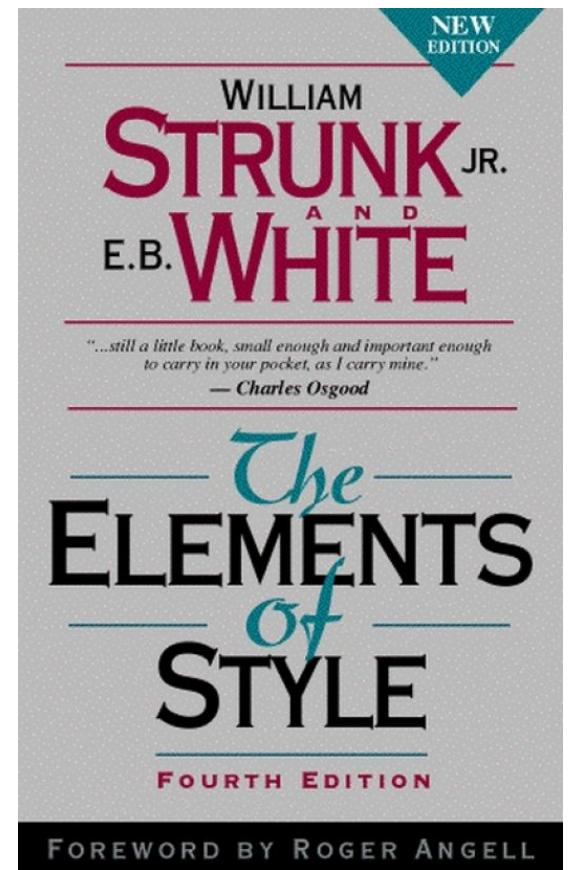
---

<sup>2</sup> APA

## *How do I choose a title?*

There is no formula or requirement, but a few things to consider:

- » It should be as short as it can be, but not too broad.
  - » E.g., *Bodystorming Human-Robot Interactions*
- » A common format in HCI:
  - » Catchy headline/System name: Technical title
  - » E.g., *Pay attention!: Designing adaptive agents that monitor and improve user engagement*
  - » E.g., *Reading socially: Transforming the in-home reading experience with a learning-companion robot*



*What are other things I should pay attention to?*

1. Writing
2. Formatting
3. Presentation

## Writing<sup>3</sup>

The HCI community pays more attention to writing than most other CS communities, so writing is very important, in particular:

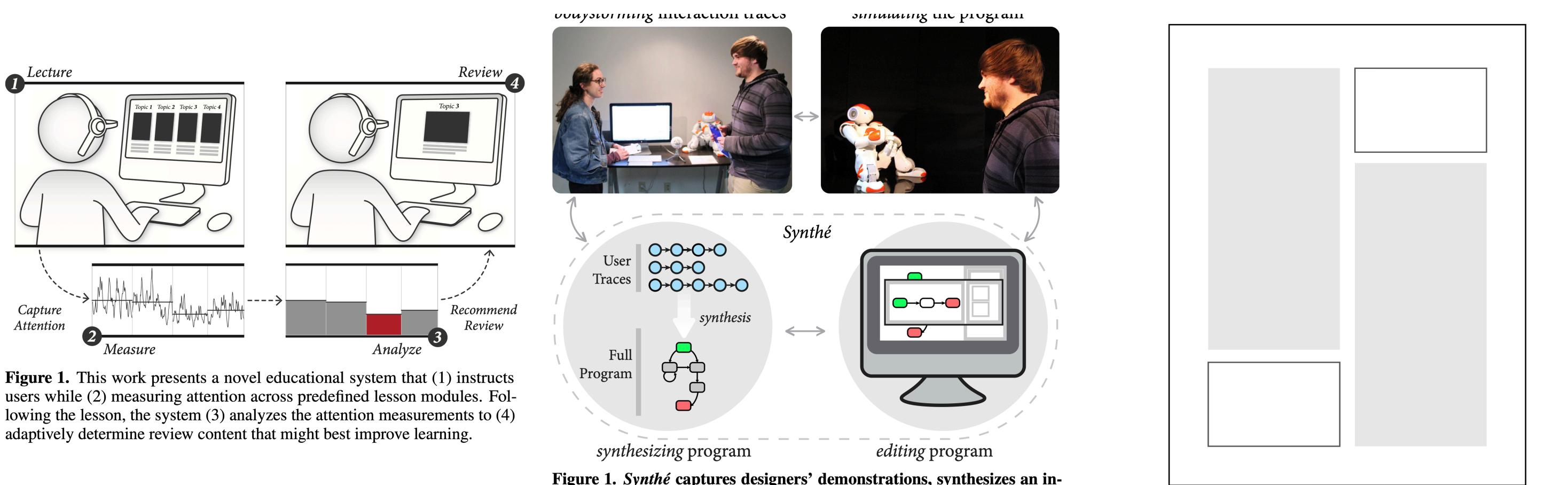
1. Reporting as *storytelling*
2. Flow among parts
3. "Cut deadwood"
4. Avoid any deviation from rules (syntax, grammar, punctuation, etc.)



<sup>3</sup>Image sources: [Left](#), [Right](#)

## Formatting<sup>4</sup>

For good *typography*, become familiar with *leading*, *tracking*, *kerning*, *widows*, *orphans*, *runts*, *rags*, *rivers*.




<sup>4</sup> Image source: [Left](#), [Right](#)

kerning  
tracking  
leading  
point size  
typeface  
justification  
line width

# Presentation<sup>5</sup>

The overall organization and visual appearance, using informative figures (e.g., a "teaser"), will improve accessibility and appeal.



<sup>5</sup> **Left:** [Szafir & Mutlu, 2014](#); **Center:** [Porfirio et al., 2019](#)

*How do we report statistics?*

**Descriptive statistics:** Distribution characteristics using summary statistics in text, tables, or graphs.

**Inferential statistics:** Test parameters and results in text or tables and highlighting of significance in graphs.

In *text*, APA guidelines are strictly followed; in *graphs*, you can be creative.

## *Descriptive statistics*<sup>6</sup>

```
> describeBy(data$Guesses, list(data$Leakage,data$TBI))

Descriptive statistics by group
: Leakage
: HC
  vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
X1     1 291 3.87 1.91      4    3.68 1.48   1   13    12 1.08    1.95 0.11

-----
: No Leakage
: HC
  vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
X1     1 367 4.02 1.85      4    3.86 1.48   1   11    10 0.82    0.83 0.1

-----
: Leakage
: TBI
  vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
X1     1 282 3.92 2.24      4    3.63 1.48   1   17    16 2.11    7.83 0.13

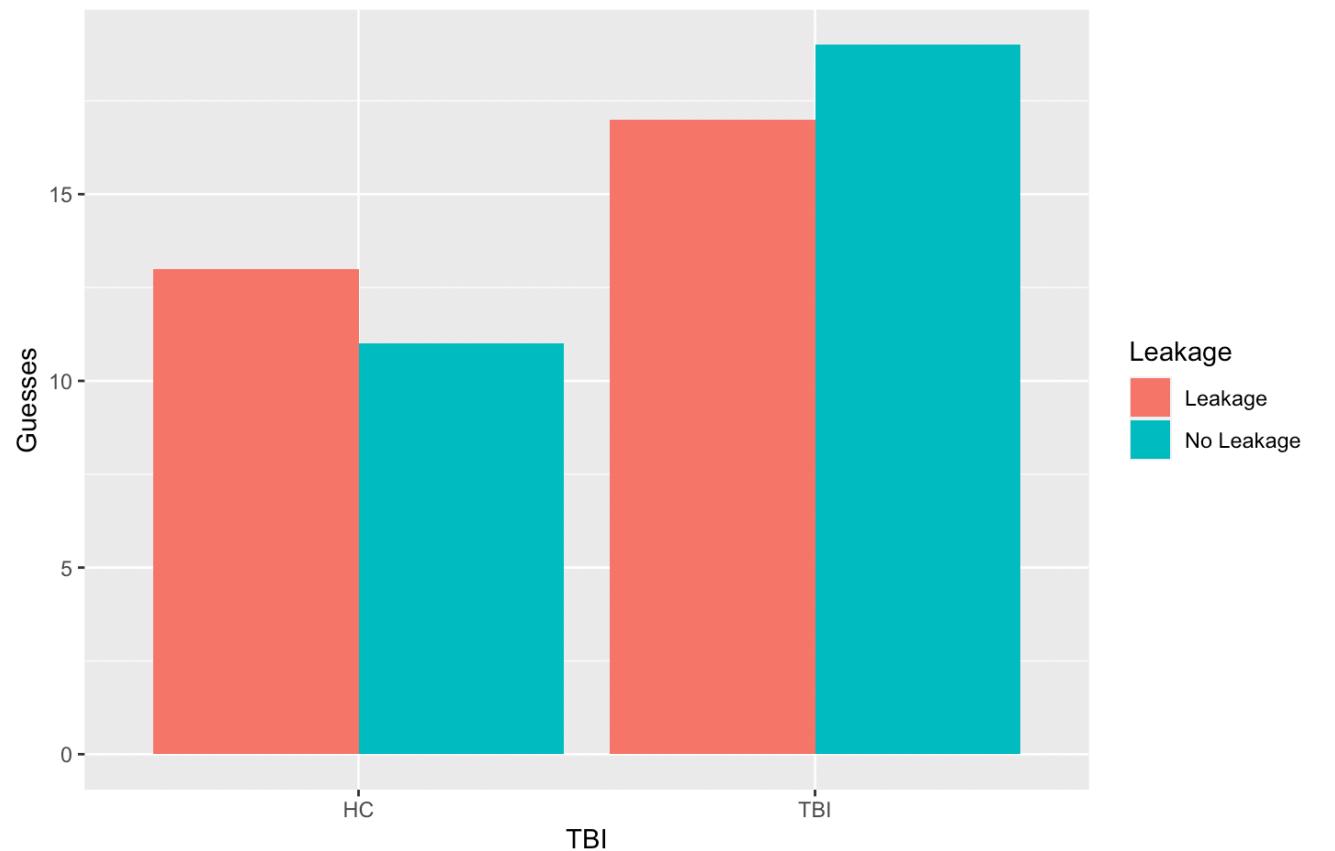
-----
: No Leakage
: TBI
  vars   n  mean   sd median trimmed  mad min max range skew kurtosis   se
X1     1 353 4.37 2.46      4    4.05 1.48   1   19    18 1.55    4.24 0.13
```

The healthy controls guessed the item that the robot picked in 3.97 guesses ( $SD=1.91$ ) when the robot gazed toward the item and in 4.02 guesses ( $SD=1.85$ ) when the robot did not gaze toward it. Participants with TBI guessed the robot's pick in 3.92 guesses ( $SD=2.24$ ) when the robot gazed toward it and in 4.37 guesses ( $SD=2.46$ ) when the robot did not.

---

<sup>6</sup>Data from Mutlu et al., 2018, Social-cue perception

How do we deal with decimals?<sup>7</sup>


| For numbers...   | Round to...                           | SPSS     | Report |
|------------------|---------------------------------------|----------|--------|
| Greater than 100 | Whole number                          | 1034.963 | 1035   |
| 10 - 100         | 1 decimal place                       | 11.4378  | 11.4   |
| 0.10 - 10        | 2 decimal places                      | 4.3682   | 4.37   |
| 0.001 - 0.10     | 3 decimal places                      | 0.0352   | 0.035  |
| Less than 0.001  | As many digits as needed for non-zero | 0.00038  | 0.0004 |

---

<sup>7</sup>Source

## *Descriptive statistics (visual)*<sup>8</sup>

```
library(ggplot2)
ggplot(data, aes(fill=Leakage, y=Guesses, x=TBI)) +
  geom_bar(position="dodge", stat="identity")
```



---

<sup>8</sup>More information on using ggplot2

## Inferential statistics<sup>9</sup>

```
> summary(aov(Guesses~(TBI*Leakage)+Error(ID/Leakage)+TBI,data=data))

Error: ID
  Df Sum Sq Mean Sq F value Pr(>F)
TBI      1  15.2  15.236  2.360  0.127
Leakage   1    4.0   4.012  0.621  0.432
TBI:Leakage 1    7.5   7.467  1.157  0.284
Residuals 142 916.6   6.455

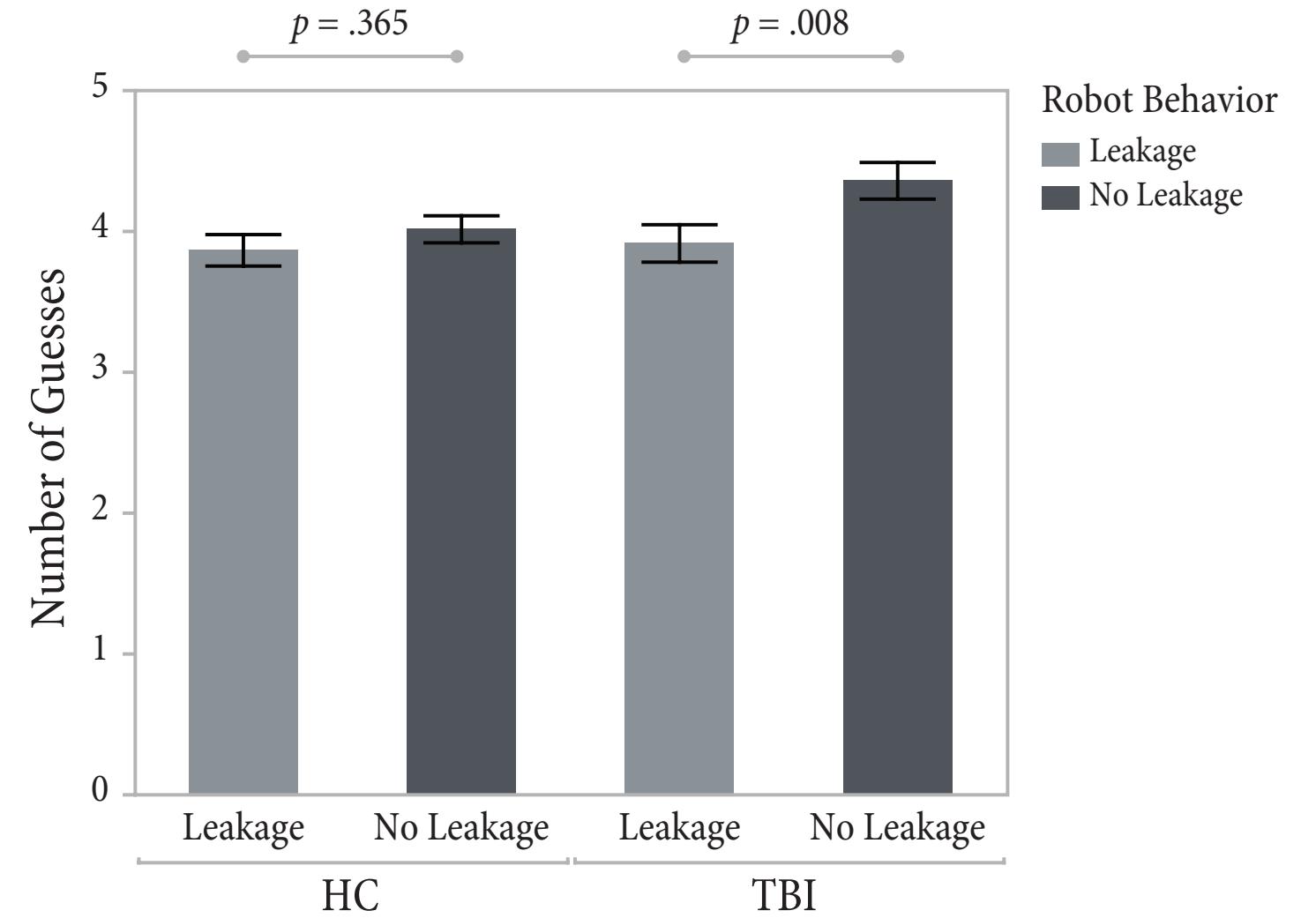
Error: ID:Leakage
  Df Sum Sq Mean Sq F value Pr(>F)
Leakage   1  27.3  27.268  6.680 0.0107 *
TBI:Leakage 1    7.1   7.131  1.747 0.1884
Residuals 144 587.8   4.082

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within
  Df Sum Sq Mean Sq F value Pr(>F)
Residuals 1001  4325   4.321
```

A mixed-model analysis of variance (ANOVA) revealed a significant effect of the leakage cue,  $F(1,144) = 6.68, p = .011$ .

Participants correctly identified the robot's pick on an average of 3.89 questions ( $SD = 2.08$ ) when the robot displayed the gaze cue and 4.19 ( $SD = 2.17$ ) when it did not.


<sup>9</sup> Shown is a simplified model using data from [Mutlu et al., 2018](#)

## How do I report different tests?<sup>7</sup>

| Statistic                   | Example                                         |
|-----------------------------|-------------------------------------------------|
| Mean and standard deviation | $M = 3.45, SD = 1.21$                           |
| Mann-Whitney                | $U = 67.5, p = .034, r = .38$                   |
| Wilcoxon signed-ranks       | $Z = 4.21, p < .001$                            |
| Sign test                   | $Z = 3.47, p = .001$                            |
| t-test                      | $t(19) = 2.45, p = .031, d = 0.54$              |
| ANOVA                       | $F(2, 1279) = 6.15, p = .002, \eta_p^2 = 0.010$ |
| Pearson's correlation       | $r(1282) = .13, p < .001$                       |

<sup>7</sup>Source

Test results can also be mapped on graphs either manually (e.g., using Adobe Illustrator) or automatically using advanced scripting (e.g., [ggplot2](#), [matplotlib](#)).



# Data Visualization with ggplot2 :: CHEAT SHEET

## Basics

ggplot2 is based on the **grammar of graphics**, the idea that you can build every graph from the same components: a **data set**, a **coordinate system**, and **geoms**—visual marks that represent data points.

data + geom = plot

To display values, map variables in the data to visual properties of the geom (aesthetics): `size`, `color`, and `x` and `y` locations.

Complete the template below to build a graph.

```
ggplot([data = DATA]) +  
  GEOM_FUNCTIONS (mapping = aes(MAPPINGS),  
  stat = STAT, position = POSITIONS) +  
  COORDINATE_FUNCTIONS +  
  FACTOR_FUNCTIONS +  
  SCALE_FUNCTIONS +  
  THEME_FUNCTIONS
```

ggplot([data = mpg, aes(x = cyl, y = hwy)]) begins a plot, that you finish by adding layers to. Add one geom function per layer.

geom(mapping = data, geom = "point")  
Creates a complete plot with given data, geom, and mappings. Supplies many useful defaults.

last\_plot() Returns the last plot.

ggsave("plot.png", width = 5, height = 5) Saves last plot as 5" x 5" file named "plot.png" in working directory. Matches file type to file extension.

## Geoms

Use a geom function to represent data points; use the geom's aesthetic properties to represent variables. Each function returns a layer.

### GRAPHICAL PRIMITIVES

```
a + ggplot(economics, aes(date, unemploy))  
b + ggplot(mtcars, aes(x = long, y = lat))  
  a + geom_point()
```

(Useful for expanding limits)

**b + geom\_curve**(density = list = 1, xend = long, xstart = long, yend = lat, ystart = lat, alpha = alpha, angle = angle, curvature = curvature, linetype = linetype, size = size)

### LINE SEGMENTS

continuous x, continuous y  
a + geom\_abline(mapping = aes(slope = 1))  
b + geom\_line(mapping = aes(slope = 1))  
b + geom\_vline(mapping = aes(x = 1))  
b + geom\_segment(mapping = aes(x0 = 1, xend = 1))

### ONE VARIABLE

continuous  
c + ggplot(mtcars, aes(hwy))  
 c + geom\_area(stat = "bin")  
 c + geom\_density(kernel = "gaussian")  
 c + geom\_densplot()  
 c + geom\_freqpoly()

discrete x, discrete y  
d + ggplot(mtcars, aes(cyl))  
 d + geom\_bar(mapping = aes(x = cyl, y = hwy))  
 d + geom\_count(mapping = aes(x = cyl, y = hwy))  
 d + geom\_freqpoly(mapping = aes(x = cyl, y = hwy))  
 d + geom\_histogram(mapping = aes(x = cyl, y = hwy))  
 d + geom\_point(mapping = aes(x = cyl, y = hwy))

### THREE VARIABLES

sealsSr + with(seals, sort(delta.long^2 + delta.lat^2)) + ggplot(seals, aes(delta, lat))  
 d + geom\_contour(mapping = aes(x = x, y = y))  
 d + geom\_raster(mapping = aes(x = x, y = y, value = value, interpolate = FALSE))

d + geom\_bar(mapping = aes(x = x, y = y, alpha = alpha, fill = fill, linetype = linetype, size = size, weight = weight))

### TWO VARIABLES

continuous x, continuous y  
a + geom\_label(mapping = aes(x = cyl, y = hwy))  
 a + geom\_label(mapping = aes(x = cyl, y = hwy))

b + geom\_curve(mapping = list = 1, xend = long, yend = lat, alpha = alpha, angle = angle, curvature = curvature, linetype = linetype, size = size)

### LINE SEGMENTS

continuous x, continuous y  
a + geom\_rect(mapping = aes(xmin = long, ymin = lat, xmax = long, ymax = lat))  
b + geom\_rect(mapping = aes(xmin = long, ymin = lat, xmax = long, ymax = lat))

### ONE VARIABLE

continuous  
c + geom\_bar(mapping = aes(x = cyl, y = hwy))  
 c + geom\_bar(mapping = aes(x = cyl, y = hwy))  
 c + geom\_bar(mapping = aes(x = cyl, y = hwy))

discrete x, discrete y  
d + ggplot(mtcars, aes(cyl))  
 d + geom\_bar(mapping = aes(x = cyl, y = hwy))  
 d + geom\_bar(mapping = aes(x = cyl, y = hwy))

### THREE VARIABLES

sealsSr + with(seals, sort(delta.long^2 + delta.lat^2)) + ggplot(seals, aes(delta, lat))  
 d + geom\_contour(mapping = aes(x = x, y = y))  
 d + geom\_raster(mapping = aes(x = x, y = y, value = value, interpolate = FALSE))

continuous bivariate distribution  
h + ggplot(diamonds, aes(carat, price))  
 h + geom\_bivariate(mapping = aes(x = carat, y = price))  
 h + geom\_density2d(mapping = aes(x = carat, y = price))  
 h + geom\_hex(mapping = aes(x = carat, y = price))

i + geom\_point(mapping = aes(x = carat, y = price))  
j + geom\_smooth(mapping = aes(x = carat, y = price))  
k + geom\_step(mapping = aes(x = carat, y = price))

### FUNCTION

i + geom\_area(mapping = aes(x = carat, y = price))  
j + geom\_line(mapping = aes(x = carat, y = price))  
k + geom\_step(mapping = aes(x = carat, y = price))

### VISUALIZING

error  
l + geom\_errorbar(mapping = aes(x = carat, y = price))  
m + geom\_errorbar(mapping = aes(x = carat, y = price))

### MAPS

maps  
n + ggplot(usa, aes(longitude = USAmerits\$longitude, state = USAmerits\$state))  
 n + geom\_map(mapping = aes(fill = state))  
 n + geom\_map(mapping = aes(fill = state))

o + geom\_map(mapping = aes(id = state, map = map))  
 o + geom\_map(mapping = aes(id = state, map = map))  
 o + geom\_map(mapping = aes(id = state, map = map))

## Stats

An alternative way to build a layer

A stat builds new variables to plot (e.g., count, prop).

(e.g. `d + geom_bar(mapping = d)`)  
data + stat + geom + coordinate + plot system

Visualize a stat by changing the default stat of a geom function, `geom_bar(stat = "count")` or by using a stat function, `stat_count(mapping = "bar")`, which calls a default geom to make a layer (equivalent to a geom function). Use `name_` syntax to map stat variables to aesthetics.

range of values to include  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat to use  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat to use  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat to use  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat to use  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat to use  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat to use  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat to use  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat to use  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat to use  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat to use  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat to use  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat to use  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat to use  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat to use  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat to use  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

## Scales

Scales map data values to the visual values of an aesthetic. To change a mapping, add a new scale.

(e.g. `d + geom_bar(mapping = d, stat = "bin")`)  
data + stat + aesthetic + prepackaged + scale to use

range of values to include  
stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

stat function  
prepackaged  
stat to use  
scale specific arguments

value created by stat

## Coordinate Systems

(e.g. `d + geom_bar()`)

**coord\_cartesian**(dim = c(0, 50))  
The default cartesian coordinate system

**coord\_flip()**

Cartesian coordinates

**coord\_polar**(theta = "x", direction = 1)

Polar coordinates

**coord\_trans**(xform = "sqrt")

transformation

**coord\_rect**(x = 0, y = 0, width = 1, height = 1)

Set scales to let axis limits vary across facets

**facet\_grid**(x ~ y, scales = "free")

x and y axis limits adjust to individual facets

**free\_x** ~ x axis limits adjust

**free\_y** ~ y axis limits adjust

**set** to adjust facet labels

**label** to add a subtitle below title

**title** to add a title above plot

**subtitles** to add a subtitle below title

**titles** to add a subtitle above plot

**label** to add a caption below plot

**caption** to add a caption below plot

**label** to add a subtitle above plot

<div data-bbox="995 590 995 600" data-label="Text

## Open Q&A

1. What courses should I take next to build stronger HCI skills?
2. How can I turn my class project into a publishable research paper?
3. What are good ways to get involved in ongoing HCI research on campus?
4. How can I integrate HCI methods into my own research area or discipline?
5. What skills from this course should I develop further to work effectively in HCI?
6. If I want to pursue HCI for my thesis or dissertation, what should I plan for next?
7. ...