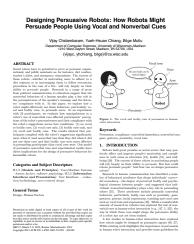
Human-Computer Interaction Project Introduction Professor Bilge Mutlu

© Human-Computer Interaction | Professor Mutlu | Week 02: Project: Introduction


General Outline

We will carry out a semester-long research project where you will practice the research methods we learn to conduct *original research*.

- Friday class time for team meetings, milestone kickoffs, and feedback sessions \rightarrow
- Ideally teams of 3, fewer or more should be exceptions \rightarrow
- 40 + 20% of your total grade, integrates team member evaluations \rightarrow
- Incrementally write a full-length (~10-pages) paper potentially submittable to an \rightarrow HCI conference

2012

Chidambara m et al.

2012

De Simone et al.

Is cheating a human function? The roles of presence, state hostility and enjoyment in an unfair video game 12

J.J. De Simone,4 Tessa Verbruggen, Li-Hsiang Kuo, Bilge Mutlu

ing author. Tel .: +1 816 589 1469. E-mail addres

thank Karyn Riddle for her valuable

2015

Johnson et al.

Handheld or Handsfree? Remote Collabora

2017

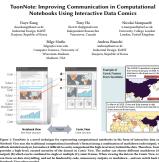
Rakita et al.

48 citations

42 citations

200 citations

12 citations


© Human-Computer Interaction | Professor Mutlu | Week 02: Project: Introduction

2021

Kang et al.

A Motion Retargeting Method for Effective Mimicry-based ration of Robot Arr

1 citations

Project Milestones & Deliverables

- » Project Topic (Today)
- » Literature survey, RQs
- » Method
- » Data
- » Analysis, results
- » Final paper

• • •		
🕈 Menu 🕈		Children's Unbo
1 . / 0	Sour	ce 🔢 Rich Text
■ figures	548	Families F12 and F17 preferred the reading robo
ACM-Reference-Form		while the remaining families preferred the fitn
acmart.cls		robot. The sibling in F12 also preferred the
acmcopyright.sty		fitness robot.
■ bibliography.bib	549	
	550-	\subsubsection{Findings}
■ fig_materials.tex	551	
fig_study2_boxes.tex	552	%weird
⊫6a ctudu? bovdocian	553	We identified three main primary factors of the
File outline		designed unboxing experience from the thematic
Introduction		analysis for study 3:
Related Work Research through de	554	(1) The Appearance/Aesthetic of the box %pom po
Children's Perceptio		wallpaper, house shape
Co-Design with Child	555	(2) Character/social entity of the box and robo
Method	555	%audio, lights (remember that the electronic pa
✓ Study 1: Exploring C		were to give social character to box
Study Design	550	0
Participants	556	(3) Perception/experiences (how 1,2 affected th
 Findings: Compo 	x .	experience) of the overall unboxing experience
Design of the Social Intera		%exciting, interesting, connected, more social
 Study 2: Co-Designin 	557	
Study Design		<pre>(1) The Appearance/Aesthetic of the</pre>
Participants	559	Children showed high interest towards the physi
 Findings 		shape and design of the box, pointing out to th
(1) Designs fr		design components including the shape of the ho
(2) Designing		the door's magnet opening, the integrated charg
(3) Designing		outlet, the robot's pom-pom bed, and the box's
Study 2.1: Feedback		interior and exterior design elements. Children
Study Design Participants		felt the house shape gave the robot a designate
 Participants Findings 		spot to ``stay, sleep, and eat'', making the
(1) Appearan		overall experience more \textit{realistic}.
(2) Box as a S		Children also appreciated the creativity and
 Study 3: Evaluation o 		details in the box, such as the wallpaper
 Study Design 		reflecting the themes, the robot's bed, the
The Final Bo		exterior bricks, and windows. They explained th
Participants		these details made them more excited to meet th
 Findings (1) The Appendix 		robot and open the box. The details of a box ha
(1) The Appe (2) Character		an easy opening (i.e., magnetic opening) and wa
(2) Character (2) Dercontio		an easy opening (i.e., magnetic opening) and wa

🔎 Review 😤 Share 🔇 Submit 🔊 History 🗩 Ch 😂 Recompile , 🛓 Download PDF 🕞 ot. ness The Unboxing Experience: Exploration and Design of Initia Interactions Between Children and Social Robots ANONYMOUS AUTHOR(S) SUBMISSION ID: 4096 best introduced to their environments. The explosion of the "unboxing" phenomenon that in media suggests hat introduction is key to technology adoption where initial impressions are made. To better understand this phenor signing a positive unboxing experience in the context of social robots for children, we conducted three studies with families of power unioning experiment in interval ($\alpha = 12$) and (2 + 32) a om, ce of social robot can be improved through the design of a creati ocially to guide initial interactions and foster a positive child-robot relationship CCS Concepts: • Human-centered computing -> Participatory design: User centered design ot Additional Key Words and Phrases: particinatory design, child robot interactions, social robots, unboxin arts ACM Reference Format Anonymous Author(s). 2018. The Unboxing Experience: Exploration and Design of Initial Interactions Between Children and Social Robots. In CHI'22: CHI'22: ACM/SIGCHI Conference on Human Factors in Computing. April 30 – May 6 2022, New Orleans, LA. ACM, he New York, NY, USA, 18 pages, https://doi.org/1 Box} ical he ouse, ing ed hat he aving

nce - Online LaTeX Editor Overle

Algorithm

Topic Selection & Team Formation

- Given a set of keywords \rightarrow
 - **Step 1:** Individual Discovery, Interest Development 10 min \rightarrow
 - **Step 2:** Construct Topics from Keywords 10 min \rightarrow
 - **Step 3:** Refine Ideas through Search & Discussion 20 min \rightarrow

Technologies

- LLMs, AI chatbots, VLMs, gen-AI \rightarrow
- AR/VR \rightarrow
- Agents, robots, digital assistants & \rightarrow companions
- Wearable devices, smartwatches, \rightarrow on-body interaction, haptics
- Smart homes, cities \rightarrow

- Assistive technologies \rightarrow
- Autonomous systems \rightarrow
- \rightarrow robots
- \rightarrow tracking)
- Fabrication, 3D printing \rightarrow

Physiological sensing (e.g., EEG, eye

Remote presence, telepresence

Contexts & Populations

- Older adults & assisted living \rightarrow
- VIPs & the blind \rightarrow
- Learning or developmental \rightarrow disabilities
- Learning & children \gg
- Health, disease management \rightarrow
- Behavior change, wellbeing, mental \rightarrow health

- \rightarrow
- Whellchair users \rightarrow
- Parents, families, & the home \rightarrow
- Vulnerable populations (chronic \rightarrow illnesses, low income/poverty, homelessness)
- Driving, transportation, navigation \rightarrow

Workplace, meetings, collaboration

Contribution Types

- Artifact, system, design \rightarrow
- Empirical study of people to inform design \rightarrow
- Empirical study of people using a system \rightarrow
- Survey, scoping/systematic reviews¹ \gg

¹Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach

Perspectives

- » Accessibility, usability
- » Building new capabilities
- » Discovering new techniques
- » Understanding user perceptions, experience, trust
- » Understanding adoption, failures, harm
- » Ethical & responsible design
- » Understanding new, emerging phenomena

9

Step 1

Individual Discovery, Interest Development — 10 min

- Spend 10 minutes individually to digest keywords \gg
- Search for these keywords to see what kinds of papers they point to \rightarrow
 - CHI 2023 Program, CHI 2022 Program \rightarrow

10

Step 2

Construct Topics from Keywords — 10 min

- Combine technologies, contexts, perspectives, contributions types that are of \rightarrow interest to you
- Take cards and go to a booth, or go to a booth that sounds interesting to you \rightarrow
- Spend 10 minutes chatting with others at the booth \gg

Examples

- **Context/population:** The blind, navigation \rightarrow
- Technology: Robots \rightarrow
- **Contribution Type:** Artifact \rightarrow
- **Perspective:** Building new capabilities \gg

PathFinder: Designing a Map-less Navigation System for Blind **People in Unfamiliar Buildings**

Masaki Kuribayashi Waseda University Tokyo, Japan rugbykuribayashi@toki.waseda.jp

Jayakorn Vongkulbhisal IBM Research - Tokyo Tokyo, Japan jayakornv@gmail.com

> Hironobu Takagi IBM Research - Tokyo Tokyo, Japan takagih@jp.ibm.com

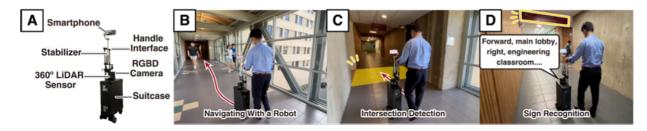


Figure 1: We present PathFinder, a map-less navigation system that can navigate blind people in unfamiliar buildings by detecting intersections and recognizing signs.

ABSTRACT

Indoor navigation systems with prebuilt maps have shown great potential in navigating blind people even in unfamiliar buildings. However, blind people cannot always benefit from them in every building, as prebuilt maps are expensive to build. This paper explores a map-less navigation system for blind people to reach destinations in unfamiliar buildings, which is implemented on a robot. We first conducted a participatory design with five blind people, which revealed that intersections and signs are the most relevant information in unfamiliar buildings. Then, we prototyped PathFinder, a navigation system that allows blind people to determine their way by detecting and conveying information about intersections and

Tatsuya Ishihara IBM Research - Tokyo Tokyo, Japan tishihara@jp.ibm.com

Karnik Ram Carnegie Mellon University Pittsburgh, United States karnikr@andrew.cmu.edu

Shigeo Morishima Waseda Research Institute for Science and Engineering Tokyo, Japan shigeo@waseda.jp

Daisuke Sato Carnegie Mellon University Pittsburgh, United States daisukes@cmu.edu

Seita Kayukawa Waseda University Tokyo, Japan k940805k@ruri.waseda.jp

Chieko Asakawa Carnegie Mellon University Pittsburgh, United States IBM Research New York, United States chiekoa@us.ibm.com

signs. Through a participatory study, we improved the interface of PathFinder, such as the feedback for conveying the detection results. Finally, a study with seven blind participants validated that PathFinder could assist users in navigating unfamiliar buildings with increased confidence compared to their regular aid.

CCS CONCEPTS

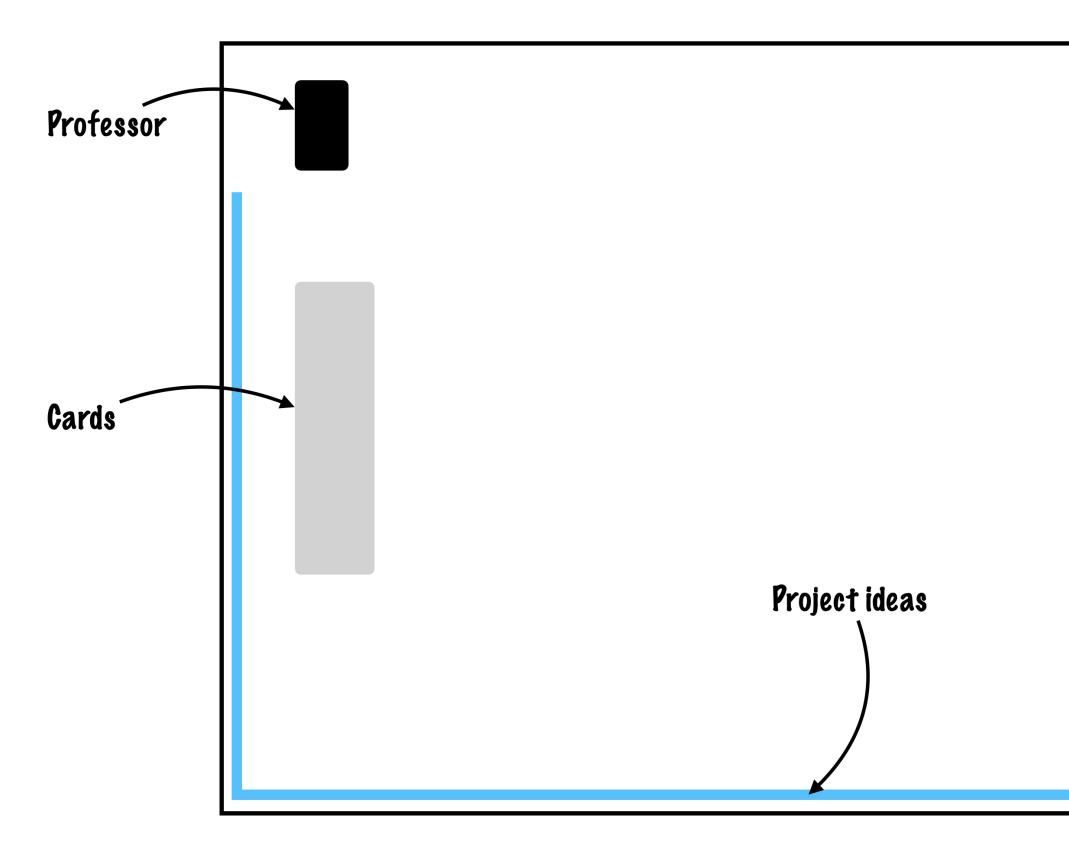
• Human-centered computing \rightarrow Accessibility systems and tools; \cdot Social and professional topics \rightarrow People with disabilities.

KEYWORDS

visual impairment, orientation and mobility, intersection detection, sign recognition

ACM Reference Format:

Masaki Kuribayashi, Tatsuya Ishihara, Daisuke Sato, Jayakorn Vongkulbhisal, Karnik Ram, Seita Kayukawa, Hironobu Takagi, Shigeo Morishima, and Chieko Asakawa. 2023. PathFinder: Designing a Map-less Navigation System for Blind People in Unfamiliar Buildings. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI '23), April 23-28, 2023, Hamburg, Germany, ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3544548.3580687


Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. CHI '23, April 23-28, 2023, Hamburg, Germany © 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 978-1-4503-9421-5/23/04...\$15.00 https://doi.org/10.1145/3544548.3580687

Tips

- Understand the limitations of this process \rightarrow
- Most combinations will be non-sensical, but some will be interesting \rightarrow
- Find topics that are of clear value to study, beneficial to society, to science, etc. \rightarrow
 - Problems worth studying must be: not studied/understudied, significant/ **>>** *impactful, pervasive/frequent, persistent*
- Choose perspectives that you are inclined to take \rightarrow
- Important to find teammates you click with \rightarrow

Q&A

- Q: Can I bring my own research into this? \gg
 - A: Yes. The technology, context/population, and/or perspective can come from \rightarrow your research. ideally, you will convince two of your classmates to work with you.

© Human-Computer Interaction | Professor Mutlu | Week 02: Project: Introduction

Step 3

Refine Ideas through Search & Discussion — 20 min

- As a team, spend 10 minutes looking through papers you can find on your \rightarrow constructed topic
- Spend another 10 minutes to discuss ideas toward refining your topic \rightarrow
- Capture your team and topic in <u>this spreadsheet</u> \rightarrow

()X₇A

- Q: Will we have access to technology, platforms, funds/resources? \rightarrow
 - A: Yes, within reasonable limits. You can borrow equipment from my lab. For \rightarrow participant samples, most teams will use classmates, friends, roommates. In general, we will try to be resourceful (e.g., reserve a room at the union/library to run studies).
- Q: Can we change any part of our topic? \rightarrow
 - A: Yes, you are committing to a starting place. You will shift and adapt different >> facets of your project topic along the way.

Next Steps

- Congratulations! You have a project topic and a team 🎉 \gg
- Next project milesone is literature review, research question \rightarrow
 - Due in two weeks \rightarrow
 - Become familiar with ~30 papers on the topic you chose \rightarrow
 - Build conceptual maps, identify gaps and opportunities \rightarrow
 - Develop and refine a research question \rightarrow
 - Write and submit a "related work" section \rightarrow