Human-Computer Interaction Qualitative Data Analysis Professor Bilge Mutlu

© Human-Computer Interaction | Professor Mutlu | Week 05: Methods: Qualitative Data Analysis

1

Questions

To ask questions during class:

- » Go to <u>slido.com</u> and use code #2938904 or <u>direct</u>
 <u>link</u> or scan QR code
- » Anonymous
- » I will monitor during class

Today's Agenda

- » Topic overview: Qualitative Data Analysis
- » Hands-on activity

Qualitative Data Analysis Mehtods

- » Content analysis
- » Discource analysis
- » Narrative analysis
- » Thematic analysis
- » Grounded Theory

What is Grounded Theory?¹²

- An *approach* to describe relationships where little is known or to provide a fresh take on \rightarrow existing knowledge
- A *method* to systematically build integrated sets of concepts from systematically obtained \rightarrow empirical data
- A process of composing knowledge through intimate contact with subjects, events \rightarrow
- A *theory* that is shaped by data as well as by the researcher \rightarrow
- HCI research adopts Grounded Theory as a systematic and rigorous method to analyze \rightarrow qualitative data

¹Glaser, B. G. and Strauss, A. The Discovery of Grounded Theory. Aldine DeGruyter, 1967.

² Strauss, A. L. and Corbin, J. Basics of Qualitative Research. Sage Publications, 1990.

What are key characteristics of Grounded Theory?

- **Induction:** Theory emerges from data.³ \rightarrow
- **Fit:** Theory generated must: \rightarrow
 - *Fit* the data: categories should emerge from the data; data should not be forced into pre- \rightarrow existing categories.
 - Be *relevant*: theory should explain, interpret, predict phenomena. \rightarrow
 - Be *adaptable*: theory should be modifiable based on new data. \gg
- **Subjectivity:** Subjectivity can be minimized by (1) keeping an open mind, thinking \gg comparatively, studying multiple viewpoints, and perdiodically asking big picture questions; (2) inter-rater reliability.

³*Inductive* approaches to research aim to generate theory, and *deductive* approches to research aim to test theory.

How do we conduct Grounded Theory?

- Reading a textual database, including fieldnotes, interview transcripts, and other data that is \gg translated into textual form
- Discovering and labeling variables \rightarrow
- Identifying and modeling relationships \gg

The Grounded Theory Process

Open Coding

Axial Coding

Selective Coding

Comparative Analysis

Theory Building

Open Coding⁴

Coding for concepts that are significant in the data as abstract representations of events, objects, relationships, interactions, etc.

⁴ Mutlu, B. & Forlizzi, J. (2008). Robots in Organizations: Workflow, Social, and Environmental Factors in Human-Robot Interaction.

How do we ensure objectivity of coding?

Reliability analysis measures the extent to which independent coders evaluate a behavior to reach the same conclusion.

What are some measures of reliability?

- *Agreement among coders*: Measures how much coders agree as percentage of coded segments \rightarrow
- Cohen's κ : Takes into account agreement that could happen by change \rightarrow
- Fisher's κ , Krippendorff's α : Alternatives to Cohen's κ \rightarrow

How do we calculate Kappa?

$$\kappa = rac{P(a)-P(e)}{1-P(e)}$$

- κ : Cohen's Kappa
- *P*(*a*): Probability of *observed* agreement
- *P*(*a*): Probability of *chance* agreement

11

How do we interpret Kappa values?

- » < 0 no agreement
- » 0–.20 slight
- » .21–.40 fair
- » .41–.60 *moderate*
- » .61–.80 substantial
- » .81–1.00 almost perfect

What process do we follow to test reliability?

- 1. Choose your measure (e.g., Cohen's κ)
- 2. Determine minimum level of reliability ($\kappa \ge .80$)
- 3. Identify your *reliability sample* (e.g., 10% of the full sample)
- 4. Train another coder and ask the coder to code the reliability sample
- 5. Calculcate reliability (iterative process: retrain, recode, recalculate)
- 6. Report inter-rater reliability

Axial Coding

Concepts are categorized into explanations of arising phenomena (e.g., repeated events, actions, interactions)

Selective Coding

Categories are classified into conditions, actions/interactions, and consequences (templates that help) us establish causal relationships) and relationships among categories are established to generate several individual models.

Negative treatments of the robot

Comprative Analysis

Each phenomenon is compared across several dimensions to understand how it is affected by social, physical, or organizational structures.

Theory Building

A final theoretical model (or models) is constructed based on the results of the comparative analysis; existing theory is embedded in this model.

high tolerance for interruptions wanting more assertive, faster robots

Recap of the Grounded Theory Process

Thematic Analysis

Using the same techniques, we can utilize a *simplified* process:

Method Selection

When is thematic analysis or Grounded Theory appropriate?

Grounded Theory

- Building substantive theory \gg
- Studying social phenomena \rightarrow

Thematic Analysis

- \rightarrow
- Triangulation \rightarrow

Qualitative evaluations of systems

Hands-on Activity: Open Coding

- » 30-min activity to practice **qualitative data analysis**
 - » Conduct open coding of interview data
 - » Calculate inter-rater reliability
 - » Work in pairs using the <u>activity handout</u>
 - » Submit PDF to Canvas

21