Human-Computer Interaction

Statistics III
 Intermediate Inferential Statistics

 Professor Bilge Mutlu
Today's Agenda

» Lecture: Multifactorial analysis + tutorials using example data
» Bonus Lecture: Writing and reporting
» Reminder: Please complete course evaluations at HelioCampus
(
COMP SCI 770-001 2024 Spring Ends: 5/3/2024 (9 days)

	Nominal	Categorical (2+)	Ordinal	Quantitative Discrete	Quantitative Non- Normal	Quantitative Normal
Nominal	Chi-squared, Fisher's	Chi-squared	Chi-squared Trend, Mann-Whitney	Mann-Whitney	Mann-Whitney, log- Student's rank	
Categorical (2+)	Chi-squared	Chi-squared	Kruskal-Wallis	Kruskal-Wallis	Kruskal-Wallis	ANOVA
Ordinal	Chi-squared Trend, Mann-Whitney	Spearman rank	Spearman rank	Spearman rank	Spearman rank,	
linear regression						

Consider this dataset. Can we use multiple t-tests?

Participant ID	Group	Time	Coding
Participant 01	Standard	245	0
Participant 02	Standard	236	0
Participant 03	Standard	321	0
Participant 04	Standard	212	0
Participant 05	Standard	267	0
Participant 06	Standard	334	0
Participant 07	Standard	287	0
Participant 08	Standard	259	0
Participant 09	Prediction	246	1
Participant 10	Prediction	213	1
Participant 11	Prediction	265	1
Participant 12	Prediction	189	1
Participant 13	Prediction	201	1
Participant 14	Prediction	197	1
Participant 15	Prediction	289	1
Participant 16	Prediction	224	1
Participant 17	Speech-based dictation	178	2
Participant 18	Speech-based dictation	289	2
Participant 19	Speech-based dictation	222	2
Participant 20	Speech-based dictation	189	2
Participant 21	Speech-based dictation	245	2
Participant 22	Speech-based dictation	311	2
Participant 23	Speech-based dictation	267	2
Participant 24	Speech-based dictation	197	2

$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}, \alpha=.05$

3 pairwise tests: $(1-\alpha)^{3}=0.86$
Reject H_{0} when $p<0.14$ instead of $p<0.05$
\rightarrow Type I error (reject H_{0} when it is true)

Participant ID	Group	Time	Coding
Participant 01	Standard	245	0
Participant 02	Standard	236	0
Participant 03	Standard	321	0
Participant 04	Standard	212	0
Participant 05	Standard	267	0
Participant 06	Standard	334	0
Participant 07	Standard	287	0
Participant 08	Standard	259	0
Participant 09	Prediction	246	1
Participant 10	Prediction	213	1
Participant 11	Prediction	265	1
Participant 12	Prediction	189	1
Participant 13	Prediction	201	1
Participant 14	Prediction	197	1
Participant 15	Prediction	289	1
Participant 16	Prediction	224	1
Participant 17	Speech-based dictation	178	2
Participant 18	Speech-based dictation	289	2
Participant 19	Speech-based dictation	222	2
Participant 20	Speech-based dictation	189	2
Participant 21	Speech-based dictation	245	2
Participant 22	Speech-based dictation	311	2
Participant 23	Speech-based dictation	267	2
Participant 24	Speech-based dictation	197	2

What are errors in hypothesis testing?
Type I error: Rejecting H_{0} when it is true
Type II error: Accepting H_{0} when it is false

Type III error: Correctly rejecting H_{0} for the wrong reason

	Null Hypothesis is true	Alternative Hypothesis is true
Fail to reject	Right decision	Wrong decision Type II error (False negative)
Reject	Wrong decision Type I error (False positive)	Right decision

Analysis of Variance (ANOVA)
Definition: Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures (such as the "variation" among and between groups) used to analyze the differences among group means in a sample. ${ }^{1}$

Procedures:

1. One-way (single factor)
2. Two-way (two factors)
3. Multi-way (multiple factors)

Models:

1. Fixed effects (between)
2. Random effects (within)
3. Mixed effects (mixed)

How do we choose among these procedures?

How do we conduct ANOVA?

We calculate the F-statistic.
$F=\frac{\sigma_{\text {explained }}}{\sigma_{\text {unexplained }}}=\frac{S S_{\text {treatment }} /(k-1)}{S S_{\text {error }} /(n-k)}$
$F=\frac{\sum n_{i}\left(M_{i}-\sum(M i / k)\right)^{2} /(k-1)}{\sum \sum\left(X_{i t}-M_{i}\right)^{2} /(n-k)}$

k : number of populations
n : sample size

One-way ANOVA in R

```
model = aov(Time~Group,data=data)
summary(model)
    Df Sum Sq Mean Sq F value Pr(>F)
\begin{tabular}{lrrrrr} 
Group & 2 & 7842 & 3921 & 2.174 & 0.139
\end{tabular}
Residuals 21 37880 1804
```

Participant ID	Group	Time	Coding
Participant 01	Standard	245	0
Participant 02	Standard	236	0
Participant 03	Standard	321	0
Participant 04	Standard	212	0
Participant 05	Standard	267	0
Participant 06	Standard	334	0
Participant 07	Standard	287	0
Participant 08	Standard	259	0
Participant 09	Prediction	246	1
Participant 10	Prediction	213	1
Participant 11	Prediction	265	1
Participant 12	Prediction	189	1
Participant 13	Prediction	201	1
Participant 14	Prediction	197	1
Participant 15	Prediction	289	1
Participant 16	Prediction	224	1
Participant 17	Speech-based dictation	178	2
Participant 18	Speech-based dictation	289	2
Participant 19	Speech-based dictation	222	2
Participant 20	Speech-based dictation	189	2
Participant 21	Speech-based dictation	245	2
Participant 22	Speech-based dictation	311	2
Participant 23	Speech-based dictation	267	2
Participant 24	Speech-based dictation	197	2

One-way ANOVA in JMP

Analyze > Fit X by Y

Oneway Anova							
\checkmark Summary of Fit							
Rsquare		0.171518					
Adj Rsquare		0.092615					
Root Mean Square Error			42.47149				
Mean of Response			245.125				
Observations (or Sum Wgts)			24				
\checkmark Analysis of Variance							
Source	DF	Sum of Squares	Mean Square		F Ratio	Prob > F	
Group	2	7842.250		3921.13	2.1738	0.1387	
Error	21	37880.375		1803.83			
C. Total		45722.625					
- Means for Oneway Anova							
Level		Number		Mean	Std Error	Lower 95\%	Upper 95\%
Prediction			8	228.000	15.016	196.77	259.23
Speech-based dicta			8	237.250	15.016	206.02	268.48
			8	270.125	15.016	238.90	301.35
Std Error uses a pooled estimate of error variance							

Are we done?
The ANOVA analysis only told us whether the methods had a significant effect on time, not which method is more effective.

We can make two types of pairwise comparisons:

1. A priori comparisons (planned contrasts)

$$
H_{0}: \mu_{1}=\mu_{2} ; H_{1}: \mu_{1}>\mu_{2}
$$

2. Post hoc comparisons (exploratory pairwise tests)

Test μ_{1} VS μ_{2}, μ_{1} VS μ_{3}, μ_{2} VS μ_{3}

A priori comparisons in R

```
levels(data$Group)
comparison = c(1,-1,0)
mat = cbind(comparison)
contrasts(data$Group) <- mat
model = aov(Time~Group, data= data)
summary.aov(model, split = list(Group=list("mu1 vs mu2"=1)))
\begin{tabular}{lrrrrr} 
Group & 2 & 7842 & 3921 & 2.174 & 0.139 \\
\(\quad\) Group: mu1 vs mu2 & 1 & 342 & 342 & 0.190 & 0.668 \\
Residuals & 21 & 37880 & 1804 & &
\end{tabular}
```


A priori comparisons in JMP

Compare Means > Each pair, Student's t

\checkmark Means Comparisons

- Comparisons for each pair using Student's t
- Confidence Quantile
$2.07961 \quad 0.05$
\checkmark LSD Threshold Matrix

Abs(Dif)-LSD			
Standard	-44.162	-11.287	-2.037
Speech-based dictation	-11.287	-44.162	-34.912
Prediction	-2.037	-34.912	-44.162

Positive values show pairs of means that are significantly different.

- Connecting Letters Report
Level Mean
Standard A 270.12500
Speech-based dictation A 237.25000
Speech-based dictation A 237.2500
Prediction A 228.00000
Levels not connected by same letter are significantly different.

- Ordered Differences Report

TukeyHSD(model)

Tukey multiple comparisons of means
 95\% family-wise confidence level

Fit: aov(formula = Time ~ Group, data = data)
\$Group

	diff	lwr	upr	p adj
Speech-based dictation-Prediction	9.250	-44.27619	62.77619	0.9011856
Standard-Prediction	42.125	-11.40119	95.65119	0.1409733
Standard-Speech-based dictation	32.875	-20.65119	86.40119	0.2896872

Post hoc comparison in JMP

Compare Means > All Pairs, Tukey HSD

- Comparisons for all pairs using Tukey-Kramer HSD
- Confidence Quantile
\mathbf{q}^{*} Alpha
$2.52057 \quad 0.05$
- HSD Threshold Matrix

Abs(Dif)-HSD

	Standard Speech-based dictation		Prediction
Standard	-53.526	-20.651	-11.401
Speech-based dictation	-20.651	-53.526	-44.276
Prediction	-11.401	-44.276	-53.526

Positive values show pairs of means that are significantly different.

- Connecting Letters Report Leve

Mean
Standard A 270.12500
Speech-based dictation A 237.25000
Prediction A 228.00000
Levels not connected by same letter are significantly different.

- Ordered Differences Report

What if we had a within-participants design?
We conduct a repeated-measures or randomeffects one-way ANOVA.

Participant ID	Group	Time	Coding
Participant 01	Standard	245	0
Participant 01	Prediction	246	1
Participant 01	Speech-based dictation	178	2
Participant 02	Standard	236	0
Participant 02	Prediction	213	1
Participant 02	Speech-based dictation	289	2
Participant 03	Standard	321	0
Participant 03	Prediction	265	1
Participant 03	Speech-based dictation	222	2
Participant 04	Standard	212	0
Participant 04	Prediction	189	1
Participant 04	Speech-based dictation	189	2
Participant 05	Standard	267	0
Participant 05	Prediction	201	1
Participant 05	Speech-based dictation	245	2
Participant 06	Standard	334	0
Participant 06	Prediction	197	1
Participant 06	Speech-based dictation	311	2
Participant 07	Standard	287	0
Participant 07	Prediction	289	1
Participant 07	Speech-based dictation	267	2
Participant 08	Standard	259	0
Participant 08	Prediction	224	1
Participant 08	Speech-based dictation	197	2

```
model = aov(Time~Group+Error(Participant.ID/Group), data= data)
summary(model)
Error: Participant.ID
Df \begin{tabular}{l} 
Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\) \\
Residuals \\
7
\end{tabular} \(19113 \quad 2730\)
Error: Participant.ID:Group
    Df Sum Sq Mean Sq F value Pr(>F)
Group 2 7842 3921 2.925 0.0868 .
Residuals 14 18767 1341
Signif. codes: 0 ‘***’ 0.001 ‘**` 0.01 ‘*` 0.05 '.' 0.1 ‘' 1
```

Within-participants one-way ANOVA in JMP

Using the Full Factorial Repeated Measures ANOVA Add-In:

Add-ins > Repeated Measures > Full-Factorial Design (Mixed Effects)

For additional options (e.g., comparisons):
Launch Dialog > Emphasis: Effect Leverage

-Response Time							
- Effect Summary							
\checkmark Summary of Fit							
RSquare 0.		0.48879					
RSquare Adj 0.4		0.440103					
Root Mean Square Error 36		36.61292					
Mean of Response 2		245.125					
Observations (or Sum Wgts) 24							
- Parameter Estimates							
- Random Effect Predictions							
- REML Variance Component Estimates							
Random Effect	Var Ratio	Var Component	Std Error	95\% Lower	95\% Upper	Wald p Value	Pct of Total
Participant ID 0.3456318Participant ID*Group		463.32143	514.98022	-546.0213	1472.6641	0.3683	25.685
		1340.506	506.66363	718.52371	3334.1618	<.0001*	74.315
Total -2 LogLikelihood $=224.2278050$		1803.8274	592.26174	1037.3604	3890.013		100.000
Note: Total is the sum of the positive variance components.							
Total including negative estimates $=1803.8274$							
- Covariance Matrix of Variance Component Estimates							
Residual is confounded with Participant ID*Group and has been removed.							
- Iterations							
\checkmark Fixed Effect Tests							
Source Nparm DF	DF DFDen	F Ratio Prob	$b>$				
Group 2	214	2.92510.	0868				
- Effect Details							

\checkmark Response Time

- Effect Summary

Summary of Fit
0.4887

Root Mean Square Error $\quad 36.6129$
Mean of Response
. 45
Observations (or Sum Wgts)

- Random Effect Predictions
- REML Variance Component Estimates

Between-participants two-way ANOVA in R

Task type	Entry method	Participant Number	Task time	Task Type coding	Entry Method coding
Transcription	Standard	Participant 1	245	0	0
Transcription	Standard	Participant 2	236	0	0
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
Transcription	Prediction	Participant 9	246	0	1
Transcription	Prediction	Participant 10	213	0	1
\ldots	\ldots	\ldots	\ldots	\ldots	
Transcription	Speech-based	Participant 17	178	0	2
Transcription	dictation				
	Speech-based	Participant 18	289	0	2
\ldots	dictation	\ldots	\ldots	\ldots	\ldots
Composition	Standard	Participant 25	256	1	0
Composition	Standard	Participant 26	269	1	0
\ldots	\ldots	\ldots	\ldots	\ldots	
Composition	Prediction	Participant 33	265	1	1
Composition	Prediction	Participant 34	232	1	1
\ldots	\ldots	\ldots	\ldots	\ldots	
Composition	Speech-based	Participant 41	189	1	2
Composition	dictation	Speech-based	Participant 42	321	1
dictation	\ldots	\ldots	2		
Composition	\ldots	Speech-based	Participant 48	202	1

model $=\operatorname{aov}(T i m e \sim G r o u p * E x p e r t i s e, ~ d a t a=d a t a) ~$ summary(model)

	Df	Sum Sq	Mean Sq F	value	$\operatorname{Pr}(>F)$
Group	2	7842	3921	2.175	0.143
Expertise	1	1395	1395	0.774	0.391
Group: Expertise	2	4030	2015	1.117	0.349
Residuals	18	32455	1803		

Between-participants two-way ANOVA in JMP

Analyze > Fit Model

Within-participants two-way ANOVA in R

model $=\operatorname{aov(Time~(Group*Task)+Error(Participant.ID/(Group*Task)),~data=~data)~}$
summary (model)

Participant ID	Group	Task	Time
Participant 01	Standard	Complex	285
Participant 01	Prediction	Complex	160
Participant 01	Speech-based dictation	Complex	201
Participant 01	Standard	Simple	272
Participant 01	Prediction	Simple	191
Participant 01	Speech-based dictation	Simple	161
Participant 02	Standard	Complex	189
Participant 02	Prediction	Complex	250
Participant 02	Speech-based dictation	Complex	178
Participant 02	Standard	Simple	247
Participant 02	Prediction	Simple	288
Participant 02	Speech-based dictation	Simple	180
Participant 03	Standard	Complex	233
Participant 03	Prediction	Complex	285
Participant 03	Speech-based dictation	Complex	225
Participant 03	Standard	Simple	200
Participant 03	Prediction	Simple	202
Participant 03	Speech-based dictation	Simple	162

Within-participants two-way ANOVA in JMP

Add-ins > Repeated Measures > Full-Factorial Design (Mixed Effects)

> Summary of Fit													
RSquare			0.397171										
RSquare Adj			0.325405										
Root Mean Square Error			37.84614										
Mean of Response			216.625										
Observation	(or Sum	Wgts)											
- Parameter Estimates													
Term					Estimate	Std E	rror DFDen	t Ratio Pr	b> \mid \|				
Intercept					216.625	4.636	8889	46.72 <	001*				
Group[Prediction]					1.6875	9.976	625514	0.17					
Group[Speech-based dictation]					-7.875	9.976	625514	-0.79					
					2.6666667	7.725	769	0.350					
Group[Prediction] ${ }^{\text {Task[}}$ [Complex]					-2.229167	7.725	14	-0.29 0					
Group[Speech-based dictation]*Task[Complex]					8.4583333	7.725	14	1.090					
- Random Effect Predictions													
- REML Variance Component Estimates													
Random Effect		Var Ratio		Var		Error	95\% Lower	95\% Upper	Wald pValue	Pct of Total			
Participant ID			-0.324559	Compone	$4.875 \quad 323.0$	7858	-1098.097	168.34739	0.1502	0.000			
Participant ID*Group			0.3338216	478.14286477.556555454		4376	-553.4719	1509.7577	0.3637	20.022			
Participant ID*TaskParticipant ID*Group*Task							-583.6208	1538.7339	0.3778	19.998			
				1432.3304 2388.0298 188		6999	767.74244	3562.5512	<.0001*	59.980			
Note: Total is the sum of the positive variance components. Total including negative estimates $=1923.1548$													
- Covariance Matrix of Variance Component Estimates													
Residual is confounded with Participant ID*Group*Task and has been removed.													
- Iterations													
- Fixed Effect Tests													
Source	Nparm	DF	DFDen	F Ratio	Prob $>\mathrm{F}$								
Group Task Group*Task	2	2	14	0.3455	0.7138								
	1	1	7	0.1191	0.7401								
	2	2	14	0.6441	0.5400								

Two-way mixed-effects ANOVA in R

model $=\operatorname{aov}($ Time~(Group*Task)+Error(Participant.ID/Group)+Task,data=data)
summary (model)

Participant ID	Group	Task	Time
Participant 01	Standard	Complex	285
Participant 01	Prediction	Complex	160
Participant 01	Speech-based dictation	Complex	201
Participant 02	Standard	Simple	272
Participant 02	Prediction	Simple	191
Participant 02	Speech-based dictation	Simple	161
Participant 03	Standard	Complex	189
Participant 03	Prediction	Complex	250
Participant 03	Speech-based dictation	Complex	178
Participant 04	Standard	Simple	247
Participant 04	Prediction	Simple	288
Participant 04	Speech-based dictation	Simple	180
Participant 05	Standard	Complex	233
Participant 05	Prediction	Complex	285
Participant 05	Speech-based dictation	Complex	225
Participant 06	Standard	Simple	200
Participant 06	Prediction	Simple	202
Participant 06	Speech-based dictation	Simple	162

Error: Participant.ID					
	Df	Sum Sq	Mean Sq	value	$\operatorname{Pr}(>F)$
Task	1	341	341.3	0.175	0.682
Residuals	14	27279	1948.5		
Error: Participant.ID:Group					
	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
Group	2	1650	825.2	0.432	0.654
Group:Task	2	1845	922.5	0.483	0.622
Residuals	28	53493	1910.5		

Two-way mixed-effects ANOVA in JMP

Add-ins > Repeated Measures > Full-Factorial Design (Mixed Effects)

- Summary of Fit										
RSquare			0.057814							
RSquare Adj			-0.05435							
Root Mean Square Error			43.70896							
Mean of Response			216.625							
Observations	(or Sum	Wgts)	48							
- Parameter Estimates										
Term					Estimate St	rror DFDen	t Ratio Pros	> \mid \|		
Intercept					216.625	$1352 \quad 14$	34.00 <.			
Task[Complex]					2.66666676 .3	135214	0.420.			
Group[Prediction]					2.6666875 1.6875	2054	0.190 .8			
Group[Speech-based dictation]					-7.875 8.9	$2054 \quad 28$	-0.88 0.3			
Task[Complex]*Group[Prediction]					-2.229167 8.92	8.922054	-0.25 0.8			
Task[Complex]*Group[Speech-based dictation]					8.45833338 .922	2054	0.950.			
- Random Effect Predictions										
- REML Variance Component Estimates										
Random Effect			Var Ratio	Compone	Var	95\% Lower	95\% Upper	Wald p Value	Pct of Total	
Participant ID[Task]			0.0066379	12.6815	1548298.71885	-572.7966	598.15973	0.9661	0.659	
Participant ID*Group[Task]				1910.4732510 .59544		1203.1556	3494.4955	<.0001*	99.341	
Total				1923.15	1548419.68502	1307.4704	3106.8671		100.000	
				-2 LogLikelihood = 457.81133323						
Note: Total is the sum of the positive variance components. Total including negative estimates $=1923.1548$										
- Covariance Matrix of Variance Component Estimates										
Residual is confounded with Participant ID*Group[Task] and has been removed.										
- Iterations										
- Fixed Effect Tests										
Source	Nparm	DF	DFDen	F Ratio	Prob $>$ F					
Task	1	1	14	0.1752	0.6819					
Group	2	2	28	0.4319	0.6535					
Task*Group	2	2	28	0.4829	0.6221					

What if I would like to include a covariate?

Participant ID	Group	Time	Years
Participant 01	Standard	245	12
Participant 02	Standard	236	5
Participant 03	Standard	321	6
Participant 04	Standard	212	13
Participant 05	Standard	267	19
Participant 06	Standard	334	18
Participant 07	Standard	287	18
Participant 08	Standard	259	18
Participant 09	Prediction	246	14
Participant 10	Prediction	213	3
Participant 11	Prediction	265	19
Participant 12	Prediction	189	13
Participant 13	Prediction	201	24
Participant 14	Prediction	197	21
Participant 15	Prediction	289	5
Participant 16	Prediction	224	18
Participant 17	Speech-based dictation	178	21
Participant 18	Speech-based dictation	289	18
Participant 19	Speech-based dictation	222	23
Participant 20	Speech-based dictation	189	16
Participant 21	Speech-based dictation	245	12
Participant 22	Speech-based dictation	311	15
Participant 23	Speech-based dictation	267	16
Participant 24	Speech-based dictation	197	9

Consider the one-way between-subjects analysis and also measuring the years of experience the user had in the task to control for that factor.

We conduct what is called an analysis of covariance (ANCOVA).

```
model = aov(Time~Group+Years, data=data)
summary(model)
\begin{tabular}{lrrrrr} 
Group & 2 & 7842 & 3921 & 2.090 & 0.15 \\
Years & 1 & 350 & 350 & 0.187 & 0.67 \\
Residuals & 20 & 37530 & 1877 & &
\end{tabular}
```

Because Years has no effect, we would remove it from our model (called model simplification) and rerun our analysis as an ANOVA.

One-way between-participants ANCOVA in JMP

Analyze > Fit Model

Data files used in Statistics I, II, and III

